PHYSICAL REVIEW E

VOLUME 48, NUMBER 6

DECEMBER 1993

Nonaxisymmetric patterns in the Saffman-Taylor problem and in three-dimensional
directional solidification at low velocity

Efim Brener*
Institut fir Festkorperforschung, Forschungszentrum Jilich, D-52425 Jilich, Germany
(Received 29 July 1993)

The theory of nonsymmetric patterns in the Saffman-Taylor problem and directional solidification
in two and three dimensions is presented. We consider various effects that influence these patterns:
the transverse gravitational force in the Saffman-Taylor problem, or transverse temperature gradient
and anisotropy of surface energy in three-dimensional directional solidification. In the latter case,
we show that the nonaxisymmetric shape correction, generated in the tip region, can be matched

smoothly to the asymptotic shape in the tail region.

Here a three-dimensional problem can be

entirely solved analytically, including the tail region and without invoking rotational symmetry. The
implications of our results for the description of the tail of three-dimensional dendrite are discussed.

PACS number(s): 47.15.Hg, 47.20.Hw, 47.60.+i, 68.10.—m

I. INTRODUCTION

The Saffman-Taylor (ST) finger problem [1] is one of
the simplest examples of pattern formation [2,3]. The
selection of a symmetric finger in two dimensions is the
most studied and best understood one. This finger is
seen in a Hele-Shaw cell (a narrow gap between two par-
allel plates) when a viscous fluid is displaced by a less
viscous one. The flat interface is unstable and either sta-
ble finger patterns or unstable fractal structures can be
formed. For the stable finger, there is a well-developed
theory explaining the selection of the pattern via a solv-
ability mechanism arising at any nonzero value of the
surface tension. In the high-velocity limit, where inter-
facial tension effects have a small magnitude, it amounts
to the computation of transcendentally small corrections
appearing beyond all orders of the regular perturbation
expansion. This type of exponentially small term was
shown to be present in the ST system via numerical
calculations [4]. Finally, matched-asymptotics-behavior
methods which carefully took into account the surface-
tension-induced singularity in the complex plane did in-
deed explain why the relative finger width A approaches
1/2 when its velocity increases [5]. All selected fingers are
reflection symmetric, i.e., the extra nonsymmetric degree
of freedom found in the original (zero-surface-tension)
finger problem [6] is not utilized by the system [7,8].

Brener, Levine, and Tu [9] have generalized the family
of solutions, as well as the selection mechanism, via inclu-
sion of nonsymmetric forcing, assuming that there exists
a gravitational force which acts on the fluid of density p.
If the cell is rotated away from horizontal by the angle w,
this will induce a transverse potential across the finger.
In the high-velocity limit, where surface-tension effects
are small, they have analyzed a local equation around
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a specific singular point in the complex plane and have
found the scaling relations for the finger width and offset
as functions of the surface tension and the rotation angle.
They have found that for small enough angle the finger
slightly deforms, with width staying at about 1/2, but
slightly decreasing. At some intermediate angle (but still
small at small surface-tension effects) the rate of defor-
mation and width shrinkage accelerates and finally, the
width becomes small and the finger hugs the top sidewall.
These results are in a good agreement with experimen-
tal study [10]. The closely related problem of the selec-
tion of nonreflection symmetric dendrites in the presence
of anisotropies which do not have a microscopic mirror
symmetry has been discussed in Ref. [11].

The theory of a symmetric ST finger in the opposite
limit, where the finger moves at low velocity and fills the
channel almost completely, has been developed by Dom-
bre and Hakim [12]. In this limit, where surface-tension
effects play a dominant role and cannot be treated as a
perturbation, their treatment is analogous to the analy-
sis of coating films done by Landau and Levich [13]. The
idea is that the tip region (outer region) and the trailing
part (inner region) of the finger can be treated separately
and matched afterwards.

The main aim of our paper is a theoretical description
of the non-symmetric patterns in two and three dimen-
sions. The approach of Dombre and Hakim is very useful
because it allows one to solve this problem analytically.
In Sec. II we recall the basic formulation and our recent
results [10] for the ST problem in the presence of non-
symmetric gravitational force. We find that for a given
rotation angle the finger sticks at the top side wall for
some critical minimal velocity (as for a symmetric fin-
ger) but does not fill the whole channel. The critical
velocity increases and the finger width decreases if the
rotational angle increases.

In Sec. III we extend the theory to the three dimen-
sions. Though we can easily define the problem mathe-
matically, the formalism no longer describes the physical
problem of a multiphase flow in a simple cell. Neverthe-
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less, as was argued in [14], the ST problem in the tube
can yield information about ensemble-averaged diffusion-
limited aggregation in the same geometry. Finally, the
three-dimensional ST problem can serve as a testing
ground for the selection theory that has been successful
for the two-dimensional problem.

Another physical problem, related to this ST problem,
is a directional solidification in a tube at small Peclet
numbers. In this problem we have a concentration field
instead of the pressure field and a gradient of temperature
instead of the gravitational force. In Sec. IV we consider
this problem for the nonaxisymmetric patterns caused by
the presence of the anisotropy of surface energy. We show
that the nonaxisymmetric shape correction generated in
the tip region can be matched smoothly to the asymp-
totic shape in the tail region. For the closely related
problem of free dendritic growth the mentioned match-
ing procedure gives rise to serious difficulties because the
deviation from the basic isotropic solution becomes large
in the asymptotic region even for small anisotropy [15].
In our case this effect does not appear because of the
presence of the tube and asymptotic shape in the tail
region can be found. So this is the first example where
a three-dimensional problem can be entirely solved ana-
lytically including the tail region and without invoking
rotational symmetry.

II. SAFFMAN-TAYLOR FINGERS
IN THE PRESENCE
OF TRANSVERSE GRAVITATIONAL FORCE

Let us recall the basic formulation of the ST problem
in the presence of nonsymmetric gravitational force. A
viscous fluid obeying Darcy’s law v = —(q/u)Vp is dis-
placed by a second fluid of negligible viscosity. Here v
is two-dimensional velocity, p is the pressure field, p the
viscosity, ¢ = b2/12 is the medium permeability, and b is
the plate spacing. Assuming incompressibility, the veloc-
ity potential ® = —(gq/u)p satisfies Laplace’s equation

V3% = 0. (1)

For a steady-state finger advancing at constant velocity
U along the z direction the boundary conditions are

0P
o U cos ¥, (2)
® = (q/p)(TK — pgzsinw), (3)
0

z=*ta

Here 0 is the angle between the local normal vector n
on the interface and the z direction, T is the surface
tension, K the local curvature, p the fluid density, g the
gravitational acceleration, w the tilt angle, and a is the
actual half-width of the channel. We are interested in
the limit of low velocity, where the finger fills the channel
almost completely. In the tip region the fluid is weakly
perturbed by the existence of the thin layers near the side
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walls, the flow is uniform [12]:

d=Uz, (5)
and the interface profile obeys Eq. (3),

YK = Zint + 0Tint, (6)

where all lengths are reduced by the half-width of the
channel a; v = ¢T/(uUa?) and o = gpgsinw/(uU) are
two dimensionless control parameters. Using the follow-
ing parametrization of the shape:

2(0) = —/d()(sin 0)/K , )

2(6) = / d6(cos 0) /K , (8)

and differentiating Eq. (6) with respect to the angle 6,
we find

dK .
'yK-(—ié———smH—}—acosO (9)
and finally
K =[(2/7)(cos 8 + osinb + C)]*/2. (10)

This expression for K contains a nonsymmetric term pro-
portional to o and corresponds to Eq. (9) of Ref. [12]
for o = 0. The integration constant C' can be found by
matching the solution (10) to the solution in the inner
region. Note that C as well as a parameter o should be
small since small curvature and small contact angle are
required for the matching to the inner region.

In the narrow gaps between the finger and the side
walls the potential ® can be taken as a constant across
the thickness of the layer and equal to its value (3) on
the interface. This approximation allows us to derive an
ordinary differential equation for the shape of the gap.
Following directly the derivation of Ref. [12], we get

d3h; dh;
h,_(Z) (’)’ d23 + o dz - 1) = —(Si. (11)

Here i = t,b and the indexes ¢t and b denote the top and
bottom gaps, respectively; h;(z) is the local thickness of
the layer: hi(z) = 1 — z¢(2) and hp(z) = —1 + zp(2);
6; < 1 is the asymptotic value of the thickness, which
is different now for the top and bottom gaps. Using the
rescaling z = (8;7)'/3%2 and h; = 8;h; we arrive at the
parameterless equation

_d3h -
5 h—1, (12)
which is identical to the equation given in Ref. [12].
In this rescaling equation we have neglected the term
062/3y=1/3dh/dz since § < 1.
As shown in Ref. [12], Eq. (12) has the following
asymptotic behavior: for Z - —oo

h =1+ aexp(2), (13)

and for Z — oo
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where «a, §, 1, and 7 depend on the origin of Z, but the
quantity

n*=n-05%/2~3.18 (15)
is translationally invariant [12]. The matching procedure
is very close to the procedure in Ref. [12], the only dif-

ference is that we have two matching conditions for the
bottom and top gaps:

O = —7/2 + /357 %, (16)

Ot = 7r/2—'y*1/35t2/377, (17)

Khi =y 3870 (18)
The index m denotes the matching point. Combining
Egs. (10) and (15)—(18), we get

5" =72(Cl+ o) /n", (19)

5 =40 = o) /n". (20)

Finally, the condition which allows us to find the inte-
gration constant C is that the meniscus fills the channel
almost completely. From Eqgs. (8) and (10) we get

Y\ [ df cos 0
Y ., .
(2) /gmb (cosf + o sin + C)1/2 2 (21)

We can expect that C and o will be of the order of §2/3
[see Egs. (19) and (20)]. It means that in Eq. (21) we
can replace the limits of integration by —n/2 and w/2
and neglect the nonsymmetric term o sin 0 in the denom-
inator (due to the symmetry reason the integration gives
only a quadratic dependence of o). By these simplifica-
tions we get an expression for C, which is identical to the
expression given in Ref. [12]:

C=-A("—), (22)
2
vt = ~ 1.4, (23)
[ "* (cos 6)1/2d6)?
/2 1/2
0)/2d6
A= Jo(cos) ~ 0.325. (24)

a y* foﬂ/z(cos 0)—1/2d6

Combining Eqgs. (19), (20), and (22), we get the final
result for the thickness of the gaps as a function of the
control parameters  and o,

8% = (v) VAW — ) + ol /", (25)

5/ = (¥ ) LA =) — o/ (26)
These predictions generalize Eq. (25) of [12]. The nu-
merical value of * has been corrected according to Ref.
[11] of Ref. [16]. Note that all constants in Egs. (25)
and (26) come from the theory of the symmetrical fin-
ger. The dependence on the asymmetry parameter o is
remarkably simple. The main effect of gravity is just a
rotation of the outer meniscus by a small angle o [see Eq.
(10): cos@ + osin@ = cos(§ — o) for small o|. For more

details and experimental study of the effect of gravity on
ST fingers see [10].

III. SAFFMAN-TAYLOR PROBLEM
IN THREE DIMENSIONS

In this section we discuss the ST problem in a three-
dimensional geometry, i.e., the ST problem in a tube. As
we mentioned in the Introduction, though the problem
can be easily defined mathematically, the formalism no
longer describes the physical problem of a multiphase
flow in a simple cell. Nevertheless, as was argued in
[14], the ST problem in the tube can yield information
about ensemble-averaged diffusion-limited aggregation in
the same geometry and can serve as a testing ground for
selection theory.

Let us first discuss the axisymmetric case, o = 0. We
note that the inner equation (12) and the matching con-
ditions (16)—(18) remain unchanged because of the small
scale (§ <« 1) and the three-dimensional effects are unim-
portant. On the other hand, the outer equation (6) con-
tains three-dimensional curvature and cannot be solved
analytically. Let us present Eq. (6) for the meniscus
shape z(r) in the form

Z” ZI

(1 + Z/2)3/2 + ,,,(1 + Z/2)1/2

+siné,, = —z/y. (27)

We chose the origin of z at the matching point 7 = 1 and
set the first term in the curvature to zero at this point.
It means that we set 3 = 0 and n = n* in the matching
conditions (16)—(18). At the matching point r = 1 we
have

—z' =tan6,, > 1. (28)

For arbitrary values of the parameter «y, the solution of
Eq. (27) with these boundary conditions behaves like z =
+~/r for small 7. A solution that is smooth at the origin
exists only for some special value of v, which depends on
0. For 0,, close to m/2 by numerical integration of Eq.
(27) we found

7r *
Om = 5 — As(3 =) | (29)

with v =~ 1.19 and A3 =~ 0.36. The subscript 3 denotes
that these numbers correspond to the three-dimensional
case. Combining Egs. (17) and (29), we find the depen-
dence 6 on v for the three-dimensional case:

823 = (v5)'/3 As(vs —v) /" (30)

It was noted in Ref. [12] that in the two-dimensional
case there is a countable set of solutions characterized

" by the appearance of n bumps and n — 1 troughs. In-

deed, Eq. (9) for 0 = 0 can be presented as a pendulum
equation, and these solutions where the pendulum per-
forms an odd number of oscillations are admissible. It
means that for one of the oscillations of the nth branch
the effective channel width equals 2/(2n — 1). Therefore
the upper bounds v} for these successive branches be-
have like v*/(2n — 1)2. For the three-dimensional case
we also have a discrete set of solutions and for large n
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we can use the result of the two-dimensional theory, be-
cause three-dimensional effects become important only
in the small region near the origin (r ~ 1/n). Levine
and Tu [14] performed the numerical simulation for the
three-dimensional problem and found the set of solutions.
However, the solution branches merge and disappear in
pairs as v becomes small enough. Our theory is valid
in the limit of v close to v where the system does not
exhibit branch merger.

The main effect of the transverse gravitational force
(for example, applied along the x direction) is just a ro-
tation of the outer meniscus by a small angle o around
the y axis. It gives the correction o cos ¢ to the matching
angle 0,, in Eq. (29) (¢ is the azimuthal angle) and for
4 instead of Eq. (30) we get

82%(¢) = (13)°[As(v3 — ) +ocosl/n*.  (31)

This result generalizes Egs. (25) and (26) to the three-
dimensional case. Another possibility to get a nonax-
isymmetric shape is to introduce the anisotropy of surface
energy. In order to discuss this possibility we turn now to
an apparently different problem, namely, the directional
solidification in a capillary tube, where the anisotropy of
surface energy at the solid-liquid interface is more realis-
tic.

IV. THREE-DIMENSIONAL
NONAXISYMMETRIC PATTERNS
IN DIRECTIONAL SOLIDIFICATION

In most common directional solidification experiments,
one is drawing at constant velocity a dilute binary mix-
ture across a linear temperature gradient. Let us discuss
the three-dimensional case where the external geometry
is given by a small cylindrical tube with the radius a. We
consider here the one-sided model of directional solidifica-
tion (diffusion only in the liquid part) with locally parallel
liquidus and solidus lines and with a constant miscibil-
ity gap AC (for details see [2]). If u = (C — Cx)/AC
(C is the impurity concentration in the liquid, Cy its
value far ahead of the solidification front) designates the
dimensionless concentration, the mass diffusion equation
reads

1o
V2u+ P2Y =,
0z
where lengths are reduced by the radius of tube a and
Peclet number is P = Ua/D, where U is the pulling
velocity and D is the diffusion coefficient. At the liquid-
solid interface the conservation law says
ou
Pcosf = ——.
cos o
Here 6 is the angle between the local normal vector n on
the interface and the z direction. At the tube’s boundary
there is no flux and

@
or

(32)

(33)

=0. (34)
=1
Far ahead of the front u(z = oo) = 0. Finally, using
the fact that the actual temperature is shifted from the
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melting temperature due to the impurities and due to the
Gibbs-Thomson effect we obtain the last condition at the
interface,

u=1- zint/lT - d()T (35)

Here Iy = m;AC/(aG) is the dimensionless thermal
length with G the applied thermal gradient and m; the
liquidus slope; do = voTy,/(aLm;AC) is the dimension-
less capillary length proportional to the isotropic part
of the surface energy vo (T, is the melting temperature
of the pure substance and L the latent heat); T is the
well known [2] Gibbs-Thomson shift in the equilibrium
melting point

ro 1 v 1 " v
"R (”+ aef) "R, (” aeg) ’
where R;, R; are the local principal radii of curvature of
the surface, ©1, O3 are the angles between the normal n
and the local principal directions on the surface, and v(n)
is the dimensionless anisotropic surface energy which is
just 1 in the isotropic case.

It is convenient to introduce a new field w = [2x/(2x —
1D](1—u/P — z/2x) (here 2x = lrP) and to rewrite Egs.
(32)—(35) in terms of w,

(36)

Ow P
2 o F
cosf = g—:, (38)
w = 5[T], (39)

where we used the same notation  for the parameter
v = (do/P)2x/(2x—1) in order to emphasize the relation
to the Saffman-Taylor problem.

For the isotropic case the analysis is basically the same
as in Ref. [12] for the two-dimensional case. Let us recall
the main points. In the limit of small Peclet numbers
three regions can be distinguished.

(i) Far ahead of the interface the field u decays expo-
nentially along the z direction.

(ii) In the tip region the terms linear in P are negligible
compared to the Laplacian and the problem is identical to
the three-dimensional Saffman-Taylor problem, which we
discussed in the preceding section. The gap 6o depends
on 7y and is described by Eq. (30) for v close to v*.

(iii) Far behind the tip (z = —o0) due to the presence
of a temperature gradient the gap becomes exponentially
small,

1—r(2) = 6(2) = doexp[Pz/(2x — 1)]. (40)
We will return to this point later.

By invoking the global conservation law it is possible
to select the position of the tip region in the temperature
field as a function of do [12],

Ztip 2X -1 *
—= = 280 — 2P~*b.
2x 0 v

- (41)
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The last term is small and describes the capillary cor-
rection. The numerical factor b equals 1 for the two-
dimensional case and can be found numerically for the
three-dimensional case.

We turn now to the anisotropic case. Our main aim
here is to show that the nonaxisymmetric shape correc-
tion generated in the tip region can be matched smoothly
to the asymptotic shape in the tail region. For the
closely related problem of free dendritic growth the men-
tioned matching procedure gives rise to serious difficulties
because the deviation from the basic isotropic solution
becomes large in the asymptotic region even for small
anisotropy [15]. In our case this effect does not appear
because of the presence of the tube, and the asymptotic
shape in the tail region can be easily found.

Let us begin from the tip region. In this region the
main effect is just a correction to the matching angle
[Eq. (29)] for the outer meniscus. The equation for the
outer meniscus reads

where T is given by Eq. (36). For the isotropic case
(v = 1) it reduces to Eq. (27) with solution z¢(r). Let
us present the anisotropic surface energy in the form

v(0,¢) =1+ eovo(0) + €nvn(0) cos ng, (43)

where ¢ is an azimuthal angle, n is an integer which
depends on the symmetry of a growing crystal, and e,
describes the strength of the anisotropy. For simplicity
we restrict ourselves just to one azimuthal harmonic. In
the linear approximation with respect to small € we can
look for a solution of Eq. (42) in the form

z(r,$) = zo(r) + €0fo(r) + €nfu(r) cosnd. (44)

The axisymmetric shape correction fo(r) gives, finally,
a small (proportional to €y) correction to the matching
angle, which means just a small renormalization of v* in
Eq. (30) for the axisymmetric part of the gap. We are
mainly interested in the nonaxisymmetric correction to
the gap. Linearization of Eq. (42) with respect to €,
gives the following linear equation for f,(r):

¥Y = z + const, (42)
J
fn " fn 3202fn n®fn
T+ 2232 " r(1+22)32 " (A +22)52 121 + 22)1/2

B +821/n 2l
T\ T 602 ) (14 22)37

where tanf = —z{. According to our choice 8 = 0 (see
the preceding section), at the matching point » = 1 we
have z{ = f/! = 0 and 0,, =~ w/2. Thus we can deduce
from Eq. (45) that at the matching point r = 1

fh=n? fnzf = |22 (1 = n® = fa/7) + O(l2z5])  (46)

for |zg| > 1 [it is always possible to set v,(7/2) = 1 by
a proper choice of €,]. One can expect that the solution
Ffn(r) of Eq. (45) which is smooth at the tip is a function
of order 1. Since we assume that, we can also expect from
Eq. (46) that at the matching point » = 1 for |z5| > 1

Fa(r =1) = v(1 = n?) 4+ O(1/2),
(47)
fi(r=1) = yn?(1 — n?)22 + O(1).
We can now find the nonaxisymmetric correction to the

matching angle (tan,, = —z{ — €, f, cos n¢g)

O = 7 — As(3i — %) + earn®(n® ~ D)cosng  (48)

and, using Eq. (17), the correction to the gap
6(¢) = 60 + 511 Cos n¢ ’

3 53 Pen(v3) 202 (n? — 1), (49)

671. = —217* 0

where &g is given by Eq. (30) (we assumed that ¢, <
53/ 3). This shape of the gap cannot be preserved and will

) + fn/v

'n,z(l + Z62)1/2

n Co Un )
v 80 7"(1 +262)1/2 7'26

-

change in the tail region due to two reasons: (i) the wrin-
kled interface tends to the equilibrium shape according
to the Wolf construction, which corresponds to 8, ~ —¢,;
(ii) both 6o and 6, will decay because of the presence of
a temperature gradient. In order to describe these ef-
fects in the tail region let us go back to the original Egs.
(837)—(39). In this region the shape of the interface can
be written as

r(2z,¢) =1 — 60(2) — dn(2)cosne, (50)

where §(z) is assumed to be small. We expect that the
characteristic scale along the z direction will be much
larger than 1 and we neglect all derivatives with respect
to z in Egs. (37) and (39). It means that the Gibbs-
Thomson shift T [Eq. (36)] is just

Y =1~ (n? —1)[6,(2) + €,] cos n (51)

and the field w, which satisfies diffusion equation (37)
and boundary conditions (34), (39), is

w=vy— érszpt—l—) (% —ln'r) — (g—) (n? —1)
X[0n(2) + €x](r™ + 77 ™) cos ngp. (52)

Using Eq. (38), we get the following equations for &o(z)
and 4, (2):

P
o \
5(2) = 57— %0(2), (53)




!

on(z) = 5 8n(2) +7(n® = 1)[8a(2) + €n]n?So(2).

x—1
(54)

The solution of Eq. (53),
do(2) = doexp[Pz/(2x —1)], (55)

describes an exponential decay of o(z) and recovers the
already mentioned result (40). The solution of linear Eq.
(54) can also be presented in the closed form, but let us
describe several limiting cases. For

Son*(n® —1) < P/(2x — 1) (56)

we can neglect the term proportional to do(z)6,(2) in the
whole region of z. By this simplification the solution of
Eq. (54) is

8n(2) = [0 + €nvdon®(n? — 1)z] exp[Pz/(2x — 1)],
(57)

where 6, is given by Eq. (49). The final asymptotic
behavior (P|z|/(2x — 1) > 1) is always described by Eq.
(57) (without the term 4,) because in this region we can
always drop the mentioned term. In the case opposite to
(56) we have another intermediate asymptotic behavior
for P|z|/(2x—1) < 1. In this region we can replace d¢(z)
by 80 and drop the first term on the right-hand side of
Eq. (54). It gives

8n(2) = —€n + (6n + €,) exp[ydon®(n® — 1)2].  (58)

This expression describes the relaxation of the wrinkled
interface with “initial” amplitude (49) to the “equilib-
rium” shape 8, = —¢€,, which corresponds to the Wolf
construction, and holds in the intermediate region of z,

(2x = 1)/P > |z > [yn*(n® — 1)bo]. (59)

For larger |z|, 6,(z) decays according to Eq. (57).

In the presence of a transverse temperature gradient
G} there is a correction to the gap which is proportional
to cos ¢. In the tip region it is described by Eq. (31) with
o = (G¢/G)/(2x — 1). In the tail region this harmonic
decays according to Eq. (57) with » = 1 and o instead
of ve,n?(n? — 1).

We note that due to the additional power of 2z in
Eq. (57) the non-axisymmetric correction 6, (z) becomes
larger than the axisymmetric one for any small €, or o.
It means that a crystal sticks to the wall at some finite
distance z, where 8g(z) = |6, (2)].

V. CONCLUSION

In this paper we have presented a theoretical descrip-
tion of nonsymmetric pattern formation caused by vari-
ous effects: transverse gravitational force in the Saffman-
Taylor problem, or transverse temperature gradient and
anisotropy of surface energy in three-dimensional direc-
tional solidification. In the problem of three-dimensional
directional solidification we have shown that the nonax-
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isymmetric shape correction, generated in the tip region,
can be matched smoothly to the asymptotic shape in
the tail region. The most important conclusion to be
drawn from this result is a new interpretation of dendritic
growth. We can think of the selection as happening only
at the tip of the dendrite while the matching of the tail
is always possible, since the mathematical structure of
the relevant equations (53) and (54) is that of an initial
value problem. This statement will be made more precise
below. In the case of growth in a cylindrical tube, this
leads to a fully analytic solution of both the selection and
shape problems including the tail region. No assumptions
about rotational symmetry have to be invoked.

In addition, our result has very important conse-
quences for the other growth situations, especially for
free dendritic growth. It frees us from the idea that se-
lection somehow requires matching the tail region to the
tip. Instead the tail shape follows from that of the tip
after solution of the selection problem for the tip where
the needle crystal is still close to the Ivantsov solution to
render linearization possible. For the three-dimensional
case, this selection problem has been solved in Ref. [15].
Using the same ideas as for the growth in a tube, we now
have the key for an understanding of three-dimensional
free dendritic growth. It will not be possible to make the
same amount of analytic progress as in growth in a tube,
but our approach essentially solves the problem with de-
tails to be worked out numerically. The crucial point
is that the nonaxisymmetric shape correction, generated
in the tip region, can be used as an “initial” condition
for the “time”-dependent two-dimensional (cross-section)
problem of the interface evolution. For the steady-state
growth in the z direction z plays the role of time for
this two-dimensional problem. For example, Egs. (53)
and (54) are evolution equations and the values of &y,
én in the tip region are the initial conditions for these
equations. The important difference between free den-
dritic growth and growth in the tube is that for free
growth the deviation from the basic isotropic Ivantsov
solution remains small only in the initial period of the
evolution. This initial deviation is given by selection the-
ory [15]. As “time” goes.on, the deviation increases due
to the Mullins-Sekerka instability and a nonlinear theory
must be applied. The two-dimensional time-dependent
problem of the interface evolution in the presence of the
anisotropic surface tension has been considered in [17] in
the framework of a Laplacian approximation. After some
transition time the system shows an asymptotic behavior
which is independent of the initial conditions. Four well-
developed arms are formed (for fourfold symmetry). The
length of the arms increases in time as t3/% and the width
of the arms increases as t?/5 (see figures in [17]). This
scaling law and the shape of the arms have been found
in [17] both numerically and analytically. In our case it
means that the length and width of the arms increases
as |z|3/% and |z|?/®, respectively, where |z| is the distance
from the dendritic tip. This shape, which is very different
from the Ivantsov paraboloid, should hold as long as the
two-dimensional diffusion length is larger than the size
of the arms, before subsequent crossover to the classical
constant velocity regime of the two-dimensional dendrite.
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In this regime the length of the arms increases as [z|. A
more detailed description is given in [18].

Another interesting and analytically unsolved problem
is a broken-parity finger discovered via numerical sim-
ulations of a crystal growing in a channel without any
external asymmetrical force [19, 20]. This problem re-
sists even a qualitative analytical explanation because of
the lack of a zeroth-order solution playing the role of an
exact solution [21] for the ST problem. The model [22],
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which has been successful for symmetrical fingers grow-
ing in a channel, cannot explain this result because of the
same reasons that there are no asymmetrical fingers in
the ST problem without external asymmetrical forces.
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